Methylphenidate redistributes vesicular monoamine transporter-2: role of dopamine receptors.

نویسندگان

  • Verónica Sandoval
  • Evan L Riddle
  • Glen R Hanson
  • Annette E Fleckenstein
چکیده

It is well accepted that methylphenidate (MPD) inhibits dopamine (DA) transporter function. In addition to this effect, this study demonstrates that MPD increases vesicular [3H]DA uptake and binding of the vesicular monoamine transporter-2 (VMAT-2) ligand dihydrotetrabenazine (DHTBZ) in a dose- and time-dependent manner in purified striatal vesicles prepared from treated rats. This change did not result from residual MPD introduced by the original in vivo treatment, because application of MPD in vitro (< or =1 miccrom) was without effect, and higher concentrations decreased vesicular [3H]DA uptake. In addition, MPD treatment increased and decreased VMAT-2 immunoreactivity in striatal vesicle subcellular and plasmalemmal membrane fractions, respectively. The MPD-induced increase in both VMAT-2 immunoreactivity and DHTBZ binding was attenuated by pretreatment in vivo with either the DA D(1) receptor antagonist SCH23390 or the DA D2 receptor antagonist eticlopride. Coadministration of these antagonists in vivo inhibited completely the MPD-induced increase in DHTBZ binding in the purified vesicular preparation. These observations suggest a role for DA in the MPD-induced redistribution of VMAT-2. The implications of this phenomenon will be discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylphenidate alters vesicular monoamine transport and prevents methamphetamine-induced dopaminergic deficits.

It has been hypothesized that high-dose methamphetamine treatment rapidly redistributes cytoplasmic dopamine within nerve terminals, leading to intraneuronal reactive oxygen species formation and well characterized persistent dopamine deficits. We and others have reported that in addition to this persistent damage, methamphetamine treatment rapidly decreases vesicular dopamine uptake, as assess...

متن کامل

The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities

Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing indi...

متن کامل

Neuropharmacological Mechanisms Underlying the Neuroprotective Effects of Methylphenidate

Methylphenidate is a psychostimulant that inhibits the neuronal dopamine transporter. In addition, methylphenidate has the intriguing ability to provide neuroprotection from the neurotoxic effects of methamphetamine and perhaps also Parkinson's disease; both of which may likely involve the abnormal accumulation of cytoplasmic dopamine inside dopaminergic neurons and the resulting formation of d...

متن کامل

Differential trafficking of the vesicular monoamine transporter-2 by methamphetamine and cocaine.

High-dose administration of cocaine or methamphetamine to rats acutely (< or = 24 h) alters vesicular dopamine transport. This study elucidates the nature of these changes. Results reveal a differential redistribution of the vesicular monoamine transporter-2 (VMAT-2) within striatal synaptic terminals after drug treatment. In particular, cocaine shifts VMAT-2 protein from a synaptosomal membran...

متن کامل

Rapid and differential losses of in vivo dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2) radioligand binding in MPTP-treated mice.

The dose- and time-dependent changes of in vivo radioligand binding to the neuronal membrane dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were examined in mouse brain after MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) administrations. Regional brain distribution studies were done in male C57BL/6 mice using simultaneous injections of d-threo-[(3)H]methylph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 19  شماره 

صفحات  -

تاریخ انتشار 2002